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Abstract

Security engineering has shifted from “write software, deploy once” to continuous, adversarial
operations: detect, correlate, contain, recover, and prove. General-purpose languages (GPLs)
can automate these workflows, but they model security actuation as ordinary side effects of
arbitrary code, leaving safety, governance, and evidentiary integrity to convention. This paper
presents ZELC, a cybersecurity-native language and runtime in which (%) observation is separated
from actuation (“kinetic execution”), (i¢) authority is capability-scoped rather than ambient,
(#it) actuation is constrained by machine-checkable intent contracts with formal blast-radius
analysis, (iv) evidence artifacts are generated as a semantic output of execution and optionally
anchored into verifiable append-only logs, and (v) information-flow control via taint tracking
prevents untrusted data from reaching sensitive operational sinks.

We present the complete formal model: abstract syntax, static and dynamic semantics via
typing rules and small-step operational semantics, a capability algebra with monotonic non-
escalation proofs, intent contracts formalized as constraint-satisfaction problems, blast-radius
bounding via abstract interpretation, a cryptographic evidence chain with Merkle-tree anchoring
and inclusion-proof verification, and a conformance predicate that provides agent-agnostic safety
guarantees. We include concrete ZELC program listings for ransomware containment, cloud
key rotation, brute-force defense, CI/CD integrity verification, and zero-trust network gating to
demonstrate that the formal model maps directly to operational reality.

We explicitly distinguish foundational primitives—capability security [1, 2], effect typing [3,
4], admission-control policy gates [5-7], information-flow control [10, 16, 17], tamper-evident
logging [11-13], Merkle-tree transparency logs [14, 15], proof-carrying code [18], and abstract
interpretation [9]—from ZELC’s novel contribution: an integrated programming model that binds
these mechanisms into one coherent operational semantics for cybersecurity operations in the
agentic Al era.

Keywords: cybersecurity operations - incident response - policy-as-code - capability security - effect
systems - information-flow control - tamper-evident logs - Merkle trees - proof-carrying code - agentic
AT safety - abstract interpretation - domain-specific languages
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1 Introduction

1.1 Operational Context

Modern security work is continuous operations under time pressure: isolate endpoints, rotate keys,
revoke sessions, quarantine artifacts, snapshot disks, notify responders, and produce evidence that
stands up to auditing and legal scrutiny. The correctness criterion is not only “did the action
execute,” but “was it authorized, bounded, reviewable, and provable.”

General-purpose languages model execution as a sequence of steps with broad ambient authority:
a process executing a script may implicitly hold credentials, filesystem rights, network access, or
cloud tokens. In such environments, “rotate a key” and “delete production data” may differ only by
parameters, not by language semantics. Consider the Python fragment:

import boto3

ec2 = boto3.client(’ec2’)

ec2.terminate_instances (Instancelds=[’i-prod-critical’])
# No safety gate. No evidence. No blast-radius check.

# Production s gone.

There is no structural distinction between this catastrophic action and a benign health-check. The
language offers no mechanism to express intent, enforce blast-radius limits, or generate evidence.

1.2 Design Thesis: The Kinetic Gap

We define the kinetic gap as the mismatch between the operational demands of security actuation
and how typical programming languages structure authority, effects, and evidence.

Definition 1.1 (Kinetic Gap). The kinetic gap G is the four-dimensional mismatch between
operational security requirements and language-level semantics:

g = <gacta gauth, ggOVa gev> (1)
where each component represents a distinct semantic deficiency:

Gact : Side effects are not isolated from analytic computation.
Gauth © Permissions exist as ambient privilege, not explicit objects.
Ggov : Blast-radius constraints are external to code semantics.

Gev : Logs are mutable, optional, and frequently incomplete. (2)

ZELC’s core thesis: cybersecurity operations deserve a language-level semantics that makes actuation
explicit, bounded, and evidentiary by construction. Formally, ZELC aims to close G such that each
component is reduced to L (null gap) under its operational semantics:

[[ZELC]] ): gact = gauth — ggov - gev =1 (3)

1.3 Scope and Contributions

This paper makes the following contributions:
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C1 Formal language model. We define ZELC’s abstract syntax, type system with a two-point
effect lattice (RO C KI), and small-step operational semantics with evidence generation as a
side-product of kinetic transitions.

C2 Capability algebra. We formalize capability injection, attenuation, and the monotonic
non-escalation invariant, proving that authority at any program point is bounded by initial
injection.

C3 Intent contracts and blast-radius analysis. We model intents as constraint-satisfaction
problems and provide a sound static blast-radius checker via abstract interpretation.

C4 Cryptographic evidence chain. We formalize the hash chain, signature blocks, Merkle-
tree anchoring, and inclusion-proof verification, proving evidence completeness for well-typed
programs.

C5 Agent-agnostic safety. We define the conformance predicate and prove that the same
safety guarantees hold regardless of whether code is human-authored or Al-generated.

C6 Taint tracking for operational sinks. We specialize information-flow control for SOC
actuation sinks (firewall rules, IAM revocations, process termination) with evidence-generating
sanitization.

C7 Concrete operational examples. We present complete ZELC programs for ransomware
containment, cloud key rotation, brute-force defense, CI/CD integrity, and zero-trust gating.

2  Prior Work and Positioning

This section enumerates major adjacent prior art to pre-empt overclaiming. In each case, we state
the relationship precisely: ZELC uses the concept as an internal mechanism but does not claim its
invention.

2.1 Capability-Based Security

Capability-based security was introduced by Dennis and Van Horn [1] and developed extensively in
the object-capability model by Miller [2]. Authority is represented by unforgeable tokens, contrasted
with ACL-driven ambient authority; capabilities implement least privilege and avoid confused-deputy
attacks.

ZELC uses the capability concept as a language invariant: kinetic actions are only possible when
the relevant capability objects are present and validated. ZELC does not claim to invent capabilities.

2.2 Effect Systems

Effect typing makes side effects explicit at the type level, supporting disciplined separation of pure
computation from effectful computation. Lucassen and Gifford [3] introduced the first effect system;
Koka [4] is a well-known example of row-polymorphic effect types.

ZELC specializes the effect boundary for security operations by introducing “kinetic” actuation
as the primary effect of interest. ZELC does not claim to invent effect typing.
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2.3 Policy-as-Code and Admission Control

Kubernetes admission controllers [5] evaluate create/update/delete requests and can reject unsafe
changes before state is written. OPA [6] formalizes policy evaluation prior to admission. Terraform
Sentinel [7] implements policy-as-code gating for infrastructure changes.

ZELC internalizes gating into the language semantics of kinetic blocks and applies it to multi-
domain security actuation.

2.4 Information-Flow Control and Taint Tracking

Denning [10] introduced the lattice model for secure information flow. TaintDroid [16] is a canonical
system-wide dynamic taint tracking system. Jif [17] is a security-typed language extension for Java
supporting IFC.

ZELC applies taint/IFC to operational sinks (firewall rules, IAM revocations, deletions) and
couples violations to intent rejection and evidence emission.

2.5 Tamper-Evident Logging

Schneier and Kelsey [11] describe mechanisms to detect log manipulation. Snodgrass et al. [12]
address tamper detection in audit logs. RFC 5848 [13] specifies signed syslog messages.

ZELC’s claim is that evidence generation is a semantic consequence of kinetic execution.

2.6 Transparency Logs, Merkle Trees, and Ledgers

Certificate Transparency [14] logs are append-only and publicly auditable. Sigstore Rekor [15]
provides a transparency log with signed tree heads. Amazon QLDB [20] provides cryptographically
verifiable immutable transaction history.

ZELC provides a standardized evidence object model and anchoring interface consistent with
transparency-log properties.

2.7 Proof-Carrying Code and Static Verification

Proof-carrying code [18] attaches machine-checkable proofs to untrusted code. The eBPF verifier [8]
statically analyzes programs before execution.

ZELC borrows the “verify before execute” philosophy, applying it to kinetic constraints and
capability proofs.

2.8 Abstract Interpretation

Cousot and Cousot [9] introduced abstract interpretation as a theory of sound approximation of
program semantics. ZELC uses abstract interpretation for compile-time blast-radius bounding.
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2.9 Constrained Language Model Programming

LMQL [19] formalizes constraints over LLM output. ZELC complements constrained generation by
enforcing constraints at the actuation layer, even if the textual output of an agent is imperfect.

3 Core Formal Model

3.1 Semantic Domains

Definition 3.1 (Semantic Domains). The ZELC semantic model is parameterized over the following
domains:

Y € State Machine state (4)

C C Cap Capability set (5)

7 € Intent Intent contract (6)

P € Prog ZelC program (7)
A(P) C Act Kinetic actions in P (8)
ECEv Evidence trace 9)
H:{0,1}* — {0,1}%*° Hash (SHA-256) (10)
Sign : SK x {0,1}* — Sig Digital signature (11)
Verify : PK x {0,1}* x Sig — {true, false} Signature verify (12)

We additionally define the state transition function § : State x Act — State such that §(%, a(?))
yields the successor state after executing action a with arguments v.

3.2 Type Universe

ZELC provides both standard types and a rich set of semantic security types that distinguish
security-relevant values at the type level:

Definition 3.2 (Type Universe). The type universe 7 is defined by the following grammar:

7 :=unit | Bool | Int | Float | Text | Duration (13)
| IP | CIDR | Hash | Userld | CVE | Controlld (14)
| RiskScore | IOCSet | Incident | Timeline | EvidencePack (15)
| List[r] | Map[r,7,] | Record{l; : 71,...,l, : 7} (16)
| 71 =% 7 (17)

where € € {RO, Kl} is the effect annotation on function types.

Remark 3.3 (Semantic Types Prevent Confusion). Unlike GPLs where an IP address is a String,
in ZELC the expression firewall block ip "Hello World" is a compile-time type error: the
block action requires an argument of type IP, not Text. This eliminates an entire class of injection
and parameter-confusion bugs at the type level.
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3.3 Abstract Syntax
Definition 3.4 (Full Abstract Syntax). The abstract syntax of ZELC is given by:

Programs:

P = check Name { S} | define f(Z) { S} | intent Name { Zpoay } | P; P (18)

Statements:

S = 5;5|setx=F | changex=FE | keepx =F (19)
| when E { S } [otherwise { S }] | eachzin E{S } (20)
| do[Z,C]{ K }end | try {S } catche{ S} (21)
| evidence record title details E | audit log event details E (22)
| alert severity message E | notify channel E | stop | wait £ (23)

Kinetic Statements (only inside do...end):
K := actiona(v) | K;K | eachzin E{ K } (24)
| when £ { K } | evidence record E | audit log E (25)

The do ... end block is the kinetic boundary: only kinetic statements K are permitted inside.
Outside do, only analytic (read-only) statements are admitted. This is the structural enforcement
mechanism that closes G,ct.

Definition 3.5 (Intent Contract Body). The intent body Zyqy binds to a named intent declaration:

Thody ::= category: c | risk level: ¢ | constraints { Ci } (26)
Clist := max_targets: n | time_limit: d
| requires_approval: a | exclude_scope: Sjg (27)

3.4 Effect Typing: Read-Only versus Kinetic
Definition 3.6 (Effect Lattice). We define a two-point effect lattice:
e € {RO, KI} with ordering RO C KI (28)

where RO denotes read-only (analytic) effects and Kl denotes kinetic (state-changing) effects. The
join operator is:

e1lley = (29)

{RO if 64 =9 = RO

Kl  otherwise

Typing judgments take the form I' - E : 7!¢, meaning expression E has type 7 and effect ¢
under context I'.
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Definition 3.7 (Core Typing Rules). The ZELC type system enforces the kinetic boundary via the
following rules:

Rule (VAR) — Variable lookup is read-only:

(x:7)el
' - 2z:7!RO VAR (30)
Rule (SET) — Binding is read-only:
'HE:7!R
7! RO SET (31)

I' F set z = F : unit ! RO

Rule (AcT) — Kinetic actions carry effect KI:

a € Acty I'7:7!RO
I' F action a(?¥) : unit ! Kl

Act (32)

Rule (Do) — Kinetic blocks require authorization and intent satisfaction:

'k K :unit! Kl Auth(X,C,K) Sat(Z,%, K)

['F do[Z,C] (K} end : unit ! K| bo (33)
Rule (OuTsIDE) — Non-kinetic code must remain read-only:
S outside any do block ' S:7!l¢ OUTSIDE (34)
e = RO
Rule (SEQ) — Sequential composition propagates effects:
'S :m!le I'E Sy :m!leg SEQ (35)

F"Sl;SQWTQ!(€1|_|€2)

Rule (WHEN) — Conditional preserves effect:

' E:Bool!RO 'S :7!e TESy:7!eg

W 36
'+ when FE {S;} otherwise {S2} : 7! (g1 Uey) HEN (36)
Rule (EAcH) — Iteration propagates body effect:
'+ E : List[r']! Lrz:7FS:7!
E : List[7'] RO ,r:T ESiTle BAcH (37)

I'Feachzin E {S} : unit!e

Rule (EVIDENCE) — Evidence emission is always read-only (it is a semantic output, not a state
change):
'k E : Record{...} RO
I' - evidence record title details ' : unit ! RO

Ev (38)
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Theorem 3.8 (Effect Soundness). If a well-typed ZELC program P satisfies I' = P : 7! RO, then P
performs no kinetic actions. Conversely, any kinetic action a(U) in P must occur inside a do . . .end
block.

Proof. By structural induction on the typing derivation. The only rule introducing effect Kl is
(Act), which requires a € Actk;. By rule (OUTSIDE), any statement outside a do block must have
effect RO. Since RO # KI, rule (AcT) cannot appear outside do. Rule (Do) is the only construct

that promotes Kl into the enclosing scope. Therefore, all kinetic actions are structurally confined to
do blocks. ] ]

4 Capability-Scoped Authority

4.1 Capability Algebra
Definition 4.1 (Capability). A capability  is an unforgeable token:
k = (o, r, ttl, issuer, sig) € Cap (39)

where o € Obj is the target object (endpoint, IAM identity, firewall rule set, S3 bucket, ...),
r C Right is the granted right set, ttl € R>g U {oo} is the time-to-live, issuer is the granting
principal, and sig is a digital signature for authenticity.

Definition 4.2 (Authorization Predicate). The authorization predicate is:
Auth : State x 2€%P x Act — {true, false} (40)
defined as:
Auth(Z, C, a(¥)) = Ixk € C: [obj(k) = target(a,v) A reqRights(a) C r(k) A alive(s,X)]| (41)

where alive(k, X) = (X.time < k.ttl) A Verify(k.issuer.pk, serialize(k), k.sig).

4.2 Attenuation and Non-Escalation
Definition 4.3 (Attenuation Operator). The attenuation operator produces a restricted capability:
attenuate(s, 7', tt') = &' = (o, 7/, min(ttl, ttl'), issuer, Sign(sk, serialize(x’))) (42)
subject to: ' C r and tt’ < tt.
Axiom 4.4 (Monotonic Non-Escalation). For any derived capability £’ from k:
rights(k’) C rights(x) A ttl(k') < tt(k) (43)
This is enforced by construction in Definition 4.3.

Proposition 4.5 (Least-Privilege Bound). Under Aziom 4.4, the authority available at any program
point p is bounded:
Vpe P, Vi, € Cp: rights(kp) C U rights(ko) (44)

K0 ECinit
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Proof. By induction on the derivation chain from Ci,j; to C,. Each derivation step applies attenuate,
which by Definition 4.3 can only reduce rights. Therefore the union of rights at p is bounded by the
union of rights at initialization. O O

Definition 4.6 (Capability Scope Binding). Capabilities are explicitly injected into do blocks via
lexical scoping:
do[Z,C] {K} end = C is immutable within K (45)

No capability can be fabricated, copied from ambient scope, or escalated within the kinetic block.

5 Intent Contracts and Blast-Radius Constraints

5.1 Intent as a Constrained Operational Contract

Definition 5.1 (Intent Contract). An intent contract Z is a seven-tuple:

T = (Allow, Deny, Limits, Window, Approvals, Redaction, EzcludeScope ) (46)
where:
Allow C Act Permitted actions (47)
Deny C Act Forbidden actions (48)
Limits = (Ligt, Lyate, Lscope) € I\ Numerical bounds (49)
Window = [tstart, tend] C R>0 Temporal bounds (50)
Approvals € {auto, manual(n), quorum(k,n)} HITL policy (51)
Redaction € RedactionRule Field masking (52)
EzcludeScope C Obj Protected objects (53)

Definition 5.2 (Intent Satisfaction). Intent satisfaction is a conjunction of five conditions:

Sat(I7 E? a(ﬁ» = QPallow A Pdeny A Plimits A Pwindow A Pscope (54)

where:

Vallow = a € Allow

Pdeny = a ¢ Deny

@limits = BR(E, a(V)) < Ligty A rate(3,a) < Lyate
Owindow = 2.time € [tstart, tend]

Yscope = Targets(X, a(v)) N ExcludeScope = () (

A~~~ I~ I/~
(S
D

ot Ot
co
S N e N N

Ut
Ne)

Kinetic execution is permitted only if Sat = true. Otherwise the runtime fails closed and emits a
rejection evidence record.

5.2 Blast Radius Formalization

Definition 5.3 (Blast Radius Function). Let Targets : State x Act — 2°PJ return the set of assets
impacted by an action. The blast radius is:

BR(Z, a(v)) = |Targets(X, a(?)) | (60)
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For composite kinetic blocks, blast radius is additive:
BR(E, Ki; Ks) = |Targets(X, K1) U Targets(6(3, K1), K») | (61)

For iteration over n elements:

U Targets(X;, a(v;)) (62)
i=1

BR(Z, each z in [vy,...,v,] { action a(x) }) =

where 3J; is the state after executing the first ¢—1 iterations.

5.3 Static Blast-Radius Bounding via Abstract Interpretation

Definition 5.4 (Abstract Domain for Blast Radius). Define the abstract domain D = (State, C b)

where abstract states 3 map variables to intervals or finite sets. The abstraction and concretization
functions form a Galois connection:

(o, ) : 253t — State with ao~y Jid (63)
following Cousot and Cousot [9].

Definition 5.5 (Abstract Blast Radius). The abstract blast-radius function U over-approximates
BR:
U : State x Act — N
satisfying VI € 4(2) : BR(Z,a(?) < U(S, a(?)) (64)

For the loop construct each x in collection { action a(x) }, if the abstract analysis determines
|collection| < n (where n may be an interval upper bound), then:

U(%, each z in C {action a(z)}) < n - max U, av)) (65)

Theorem 5.6 (Soundness of Static Blast-Radius Checking). If U is a sound over-approzimation of
BR (Definition 5.5), then:

A A

U, a(@) < Ligt = BR(Z, a(?) < Ligr VX €~(D) (66)

Conversely, if U(S, a(7)) > Ligt, compilation is conservatively rejected.

Proof. By the soundness property of the Galois connection (Equation 63), for every concrete
state 2 € v(X), the abstract evaluation over-approximates the concrete. Therefore BR (2, a(?)) <
U(X, a(V)) < Ligt. The rejection case follows by contrapositive: if the abstract bound exceeds Lygt,

there may exist a concrete state violating the limit, so conservative rejection is sound. O O
Example 5.7 (Compile-Time Rejection). Consider the ZELC fragment:

| intent Isolate {
2 constraints { max_targets: 5 }

}

5 check MassReboot
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6 set all_hosts = inventory.get_all() -- /all_hosts/ = 500
7 do

8 each host in all_hosts

9 linux service "critical-db" restart == U:500>5:Ltgt
10 end

11 end

12 end

Listing 1: Blast-radius violation detected at compile time.

The abstract interpreter determines |all__hosts| = 500 and computes U=500>5= Lig;. Compila-
tion is rejected:

A

0 =500 > 5= Ly
—> REJECT (“Blast radius exceeds limit by 99x”) (67)

6 Evidence-First Semantics

6.1 Evidence Object Model

Definition 6.1 (Evidence Record). For each kinetic action instance i, ZELC emits a structured
evidence record:

€V; = <Z’dla t‘si) Ury Iidafp(’%Za a;, H(ﬁl)a H(Epre)a H(Zpost)7 Pis H<p012)a hi—1> (68)

s\ J/ /

~~ - ~~

provenance al}%h acgon state result chain
where 7; is the executing principal, fp(k) = H(serialize(k)) is the capability fingerprint, p; €
{success, failure, rejected} is the action result, and h;_; is the hash of the previous evidence record,
forming the chain link.

Definition 6.2 (Evidence Record Schema (Formal)). Each field has a fixed type from the ZELC
type universe:

id : Hash, ts : Int,
principal : Userld, intent__id : Text,
) cap__fp : Hash, action : Text,
cv: Record args__digest : Hash, pre__state : Hash, (69)
post__state : Hash, result : Text,
policy digest : Hash, prev_hash : Hash
6.2 Cryptographic Hash Chaining
Definition 6.3 (Hash Chain). The evidence hash chain is defined recursively:
ho = 0756, h; = H(serialize(ev;) || hi—1) fori>1 (70)

Any modification to ev; for j <+ changes h; and cascades through all subsequent hashes.

Lemma 6.4 (Tamper Detection). Under the collision-resistance assumption on H, if an adversary
modifies evj to produce ev;» # evj, then:

Wo#hy = RWy#hy VE>j (71)

with overwhelming probability in the security parameter.
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Proof. By the recursive definition (Equation 70), h; depends on serialize(ev;) and h;_;. If evg- # evj,
then serialize(ev);) # serialize(ev;) (assuming injective serialization), so H (serialize(ev)||hj—1) #
H (serialize(ev;)||h;j—1) by collision resistance. The cascade follows by induction on k. O O

6.3 Signature Blocks

Periodic checkpoints are signed for authenticity and sequencing;:
sig, = Sign(sk, hy, || || t5;) (72)
Verification: Verify(pk, hy,jllts;, sig;) = true.

This is aligned with RFC 5848’s signature blocks for syslog messages [13], providing: origin
authentication, data integrity, replay resistance, sequencing, and missing-message detection.

6.4 Merkle Tree Anchoring

Definition 6.5 (Merkle Tree Construction). For a batch of evidence hashes {h1,. .., h,}, the Merkle
tree is constructed recursively. For a complete binary tree with 2¢ leaves:
- H(h;) ifi=j
M(i,j) = , . o (73)
H(M(i,m) || M(m+1,7)) where m = ||
The Merkle root is R = M(1,n). The root R is anchored into an append-only transparency
log [14, 15] or cryptographically verifiable ledger [20].

Definition 6.6 (Inclusion Proof). Given leaf hy and proof path 7 = (s1, s2,. .., Sq) (sibling hashes
along the path from leaf to root), verification proceeds by recomputing:

vo = H(hy), i = H(vi—1]||si) hg is le.ft child at level 4 (74)
H(si||vi—1) otherwise
and checking;:
VerifyInclusion(hy, 7, R) = true <= v4=R (75)

Proposition 6.7 (Evidence Completeness). Under ZELC's evidence-first semantics, for every
kinetic action a; executed in a well-typed program:

Va; € A(P): Jev; € E(P) s.t. Verifylnclusion (H (serialize(ev;)), 7, R) = true (76)

The design target is evidence completeness E1 = 1.0.

7 Taint Tracking and Information-Flow Constraints

7.1 Security Label Lattice

Definition 7.1 (Label Lattice). The taint label domain is:
telL={1,T} with LCT (77)

where L denotes untainted (trusted) and T denotes tainted (untrusted). Types are annotated: 7¢.
The join:

1L ifl=4=1
£1U£2—{ Ha 2 (78)

T otherwise
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7.2 Taint Propagation Rules
Definition 7.2 (Propagation). For any n-ary operator f:

Fi—ajlszl oo Thay,:th

F '_ f(.%'l,... ,.’L‘n) : 7_|_|?=1£i

External input sources introduce taint:

v = external__input()
FkFov:7rl

SOURCE (80)

7.3 Sensitive Sinks and Sanitization

Definition 7.3 (Sensitive Sinks). The set of sensitive operational sinks in ZELC:

S= {firewall.block, iam.revoke, iam.disable,
edr.isolate, edr.kill, linux.kill, delete, ...} (81)

Definition 7.4 (Sink Rejection Rule). Tainted arguments to sensitive sinks are rejected at compile

time:
F'Fo:7" se8

I'F s(v) : error

SINK-REJECT (82)
Definition 7.5 (Evidence-Generating Sanitization). Explicit sanitization produces a clean value
and an evidence trail:

I'Fv:7"  fen € Sanitizers(7)
't fsan(v) : 7+ A evidence emit(san_ rec)

SANITIZE (83)

The sanitization record includes: the original tainted value’s hash, the sanitizer identity, timestamp,
and the clean value, enabling post-hoc audit of all data-cleaning decisions.

Theorem 7.6 (Taint Safety). In a well-typed ZELC program, no tainted value reaches a sensitive
sink without passing through a sanitizer that produces an evidence record.

Proof. By the typing rules: (SINK-REJECT) prevents direct use of tainted values at sinks, and
(SANITIZE) is the only rule that converts T — L. Since (SANITIZE) mandates evidence emission,

every path from tainted source to sensitive sink must pass through an evidence-generating sanitization
step. ] O

8 Agentic AI Safety: Intent-Gated Execution

8.1 Threat Model for Agentic Generation

Agentic Al systems may propose incorrect or dangerous actions through hallucination, prompt
injection, or misalignment. The threat model includes:

(a) Hallucinated actions: The agent proposes process.kill when the intent allows only
service.restart.



ZELC: CYBERSECURITY-NATIVE PROGRAMMING LANGUAGE 17

(b) Scope escalation: The agent targets 500 hosts when the intent allows 10.

(c) Protected-object violation: The agent targets production databases when those are in
EzxcludeScope.

(d) Temporal violation: The agent acts outside maintenance windows.

ZELC’s guardrails are not prompt-based; they are enforced by the runtime regardless of code
provenance.

8.2 Conformance Predicate

Definition 8.1 (Program Conformance). Let P be a candidate program (human-written or agent-
generated). Define:

Conforms(P,Z,%,C) = /\ {Auth(E, C,a(?)) A Sat(Z, X, a(v)) A Taint - Safe(a(ﬁ’))} (84)
a(0)eA(P)

ZELC compilation and execution require Conforms to hold, or fail closed.

Theorem 8.2 (Agent-Agnostic Safety). For any program P—uwhether authored by a human operator
or generated by an Al agent—if the ZELC runtime accepts P for execution, then for every kinetic
action a(v) € A(P):

Auth(X,C,a(0)) A Sat(Z, X%, a(v))
A Taint - Safe(a(?)) A Jev; € E(P) (85)

That is: every executed kinetic action is authorized, intent-compliant, taint-safe, and evidence-
generating.

Proof. By Definition 8.1, the runtime checks Conforms(P,Z, 3, C) which universally quantifies over
all kinetic actions. Each conjunct is verified: Auth by Definition 4.2, Sat by Definition 5.2, and
Taint-Safe by Theorem 7.6. Evidence emission follows from the operational semantics (Definition 6.1
and rule KIN-ACCEPT in Section 9), which generates ev; for every executed kinetic action. [ [

8.3 Verify Before Execute: Operational Proof Obligations

ZeLC imposes proof obligations analogous to proof-carrying code [18]:

Accept if Conforms(P,Z,%,C)
R(P,I,C, %) = (86)
REJECT otherwise (fail closed)

Note that even rejected programs produce evidence records documenting the rejection reason,
timestamp, and the principal who attempted execution.

9 Operational Semantics

9.1 Runtime Configuration

Definition 9.1 (Configuration). A runtime configuration is a five-tuple:

o= 1(%C1E&8) (87)
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where ¥ is the machine state, C is the capability set, Z is the active intent, £ is the accumulated
evidence trace, and S is the remaining statement to execute.

9.2 Small-Step Transition Rules

The transition relation o — ¢’ is defined by the following rules.

Rule (SET) — Variable binding (read-only):

[E]s =v
(3,C,Z,&, set x=FE;S) — (X[z—],C,I,E,S)

SET (88)

Rule (WHEN-TRUE):

[E]s = true
(3,C,7,&, when E {S;} otherwise {S2}; S) — (X,C,Z,&,51;5)

WHEN-T (89)

Rule (WHEN-FALSE):

[E]s = false
(3,C,7,&, when E {S;} otherwise {S2};5) — (X,C,Z, &, 52;5)

WHEN-F (90)

Rule (KINETIC-ACCEPT) — The central rule; requires authorization and intent satisfaction:

Auth(3,C,a(v)) Sat(Z,%,a(v)) X' =6(2,a(v)) ev= GenEvidence(...)
(2,C,7,&,action a(V); K) — (¥',C,Z,&||ev, K)

KIN-ACCEPT (91)

Rule (KINETIC-REJECT) — Fail closed with evidence:

~ Auwth(2,C, a(@)) V - Sat(Z,2, a(7))

KiN-REJEC 992
(3,C,Z,€&, action a(v); K) — <Z7C7Iv£”evrej,halt> IN-REJECT (92)

Rule (EVIDENCE-EMIT) — Evidence emission within kinetic blocks:
ev = MkEvidence(title, [E]s, 2, T) S )

(%,C,Z,€&, evidence record title det E; S) — (X,C,Z,&||ev, S)

Rule (EACH-STEP) — Iteration unfolds one element:

[E]ls = [v1,v2,...,05] n>1
(3,C,7,€, each z in FE {Sp};S) — (X,C,Z,E, Sp[v1/z]; each z in [vs .. .];S)

EacH (94)

Rule (STopP) — Hard halt:

(3,C,7,€, stop; S) — (X,C,Z, &|| evpalt, halt) SToP (95)

Invariant 9.2 (Evidence Monotonicity). The evidence trace £ is monotonically non-decreasing
across all transitions:
o—d = &D2¢ (96)

Evidence is append-only; no transition removes or modifies existing evidence records.
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10 Concrete Operational Programs

We present complete ZELC programs demonstrating that the formal model maps directly to
operational reality.

10.1 Ransomware Containment

| intent RansomwareContainment {

2 category: containment
3 risk_level: critical
4 constraints {

5 max_targets: 20

6 time_limit: b5m
7 requires_approval: auto
8 exclude_scope: [gateway, dns_primary]

12 check RansomwareContainment
13 keep critical_hosts = ["prod-db", "prod-web", "prod-api"]

15 when ransomware_detected

16 alert critical message "RANSOMWARE DETECTED"

17

18 do

19 set infected = event.hostname

20 set hash = event.file_hash

21

22 -- Isolate: cuts network, leaves mgmt tunnel
23 edr isolate host infected

24

25 -- Kill malicious processes

26 each proc in event.suspicious_processes

27 edr kill process proc.pid on infected

28 end

29

30 -- Quarantine the payload

31 edr quarantine file event.file_path on infected

33 -- Forenstic snapshot before remediation
34 aws ec2 snapshot instance infected

36 -- Escalate if production

37 when infected in critical_hosts

38 pager trigger message "CRITICAL: {infectedl}"
39 end

40

41 -- Threat intel enrichment

42 set intel = threat lookup hash hash

44 -- Evidence with blockchain anchor
45 evidence record "ransomware-incident" details {
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host: infected,

malware_hash: hash,

processes_killed: event.suspicious_processes,
threat_intel: intel,

containment_time: now()

rosecoin anchor evidence_pack "ransomware-{infected}"
end
end
end

Listing 2: Ransomware containment playbook with evidence anchoring.

10.2 Cloud Key Leak Response

check CloudKeyLeakResponse
keep repo = "rocheston/zelfire"
keep channel = "#soc"

when access_key_leak or secret_leak
alert critical message "Possible cloud key leak detected"
notify slack channel channel message "Rotating keys"

do
-—- Rotate compromised credentials
aws rotate keys

-- Scan source for additional leaks
github scan repo repo for secret_leak

-- Generate and anchor evidence
noodles generate evidence_pack
rosecoin anchor evidence_pack "latest"

evidence record "Key rotation and repo scan" details {
repo: repo,
timestamp: now ()

}

audit log "ZelC run completed" details {
action: "rotatet+scan",
repo: repo
}
end
end
end

Listing 3: Cloud key leak response with credential rotation.
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10.3 Brute-Force Defense

| intent BruteForceDefense {

2 category: containment
3 constraints {
4 max_targets: 5

5 time_limit: 1h
6 exclude_scope: [internal_subnets, vpn_gateway]

7 }

10 check BruteForceShield
11 keep threshold = 12

12 keep block_duration = 2 hours

13

14 when bruteforce_login

15 alert high message "Brute force attack detected"
16

17 do

18 set attacker_ip = event.source_ip

19 set target_user event.username

21 -- Block at network edge

22 firewall block ip attacker_ip for block_duration

24 -- Lock target account
25 iam lock user target_user

27 -- Notify and track

28 notify slack channel "#security-alerts"

29 message "Brute force from {attacker_ipl}"

30

31 ticket open title "Brute Force - {attacker_ip}"

32 severity "high"

34 evidence record "brute-force-containment" details

35 attacker_ip: attacker_ip,
36 target_user: target_user,
37 attempts: event.attempt_count,

38 actions_taken: ["ip_blocked", "user_locked"]
39 }

10 end

41 end

12 end

Listing 4: Brute-force detection and containment.

10.4 CI/CD Pipeline Integrity Verification

i check PipelineGuard(repository_path)
2 set repo = git.open(repository_path)

{
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set head = repo.get_head()

-- Verify commit signature (GPG)
set sig_valid = crypto gpg verify head.signature

when sig_valid is false
alert critical message "UNVERIFIED AUTHOR"
do
github block merge reason "Unsigned Commit"
evidence record "Bad_Actor_Attempt" details {
author: head.author,
email: head.email
3
stop
end
end

-- Scan for leaked secrets
set scan = aina code scan_secrets repo.files

when scan.secrets_found > O
alert warning message "LEAK: {scan.count} secrets"
do
notify slack user head.author
message "You committed an API Key"
stop
end
end

otherwise
do
-- Generate SBOM
set sbom = sbom generate format "spdx"

-- Butld distroless container
set image = docker build repo base "distroless"'

-- Vulmneradbility scan

set vulns = docker image scan image

when vulns.critical_count > 0
alert critical message "VULNERABLE DEPENDENCY"
stop

end

-- Sign with cosign
crypto sign artifact image

-— Anchor provenance to blockchain
rosecoin anchor {
type: "Supply_Chain_Release",
commit: head.hash,
image_hash: image.sha256,
sbom_hash: crypto hash sha256 sbom
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64 el

10.5

1 ch

N

-—- Deploy
kube apply image.tag namespace "production"
notify slack channel "#releases"
message "Deployed {repo.tag} securely"
end
end
d

Listing 5: Supply-chain integrity daemon with SLSA attestation.

Zero-Trust Network Gatekeeper

eck ZeroTrustGatekeeper
keep MAX_ENTROPY = 7.85
keep REQ_PER_SEC = 5000
keep GEO_RISK = 85

set stream = net capture interface "ethO" filter "tcp port

while true
set pkt = stream.next ()

-- Entropy analysis for encrypted payloads
set entropy = crypto entropy pkt.payload
set verdict = aina net inspect pkt

when entropy > MAX_ENTROPY or verdict.is_malicious
alert critical message "MALWARE: {pkt.src_ip}"
do

443"

linux firewall block ip pkt.src_ip duration "permanent"

net kill_connection pkt.session_id

evidence record "Payload_Capture" details {
src_ip: pkt.src_ip,
entropy: entropy,
ai_confidence: verdict.confidence

3

rosecoin anchor {
type: "Threat_Neutralized",
threat_hash: crypto hash sha256 pkt.payload
}
end
end

-- DDoS rate limiting
set rate = net get_flow_rate pkt.src_ip
when rate > REQ_PER_SEC
alert warning message "DDoS: {pkt.src_ip} @ {rate} rps"
do
aws waf update_ip_set action "INSERT"
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10 ip pkt.src_ip list "Global_Blocklist"
11 end
12 end

44 -- Geofencing
15 set geo = net geoip pkt.src_ip
16 when geo.risk_score > GEO_RISK

47 do

48 net drop pkt

49 audit log "Geo_Block" details {
50 country: geo.country,

51 risk: geo.risk_score

52 }

53 end

54 end

55 end

56 end

Listing 6: Zero-trust gatekeeper with entropy analysis and geofencing.

11 Architectural Overview

11.1 Execution Pipeline

The ZELC runtime processes programs through a multi-stage pipeline, depicted in Figure 1.

Parse Type Check Taint Check Blast Radius
AST generation Effect analysis IFC analysis Abstract interp.

REJECT REJECT

Capability Intent Kinetic Evidence

Validation Satisfaction Execution Generation

Auth check Constraint eval. State transition Hash 4 anchor

REJECT

Figure 1: The ZELC execution pipeline. Static phases (top row) precede runtime phases (bottom
row). Rejections at any stage produce evidence records and halt execution.

11.2 Three-Layer Safety Architecture

ZELC implements defense-in-depth through three orthogonal safety layers:
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Table 1: The three layers of safety in ZELC.

Layer Mechanism Phase Prevents

Type Safety Effect-typed compiler Compile Type confusion, kinetic actions outside do blocks

Memory Safety Scope-bound managed refs Runtime Buffer overflows, use-after-free, memory leaks

Kinetic Safety  Intent-gated guard Runtime Mass deletion, scope violation, unauthorized esca-
lation

11.3 Memory Model

ZELC uses a scope-bound memory model without raw pointers:

Definition 11.1 (Scope-Bound Memory). Memory allocations within a check or do block are
automatically reclaimed when the block exits:

exit(do) = Vref € locals(do) : dealloc(ref) (97)

No pointer arithmetic, no malloc/free, no garbage-collector pauses. This eliminates buffer overflows
and memory leaks for operational tasks.

11.4 Concurrency Model

ZELC employs an actor model for concurrent execution:
Definition 11.2 (Actor Isolation). Each check block executes in an isolated lightweight actor with:
Actor(check N) = (Xiocal, Ciocals Elocal, mailboz ) (98)

Actors share no mutable state. Communication is via message passing through the mailbox. This
enables 1000+ concurrent security checks without CPU thrash or race conditions.

12 Tiered Operational Model

ZELC is designed to operate within a four-layer defense stack, depicted in Figure 2.

{Layer 1: Detection — SIEM, EDR, NDR (Splunk, CrowdStrike, Datadog)} The Eyes

!

[Layer 2: Intelligence — AINA (Al Agent): correlate, classify, recommend} The Brain

!

{Layer 3: Action — ZELC (Kinetic Execution): contain, isolate, rotate, revokeﬂ‘he Hands

!

{Layer 4: Proof — Rosecoin (Blockchain Anchoring): anchor, verify, notarize}The Memory

Figure 2: The tiered defense model. ZELC operates at Layer 3, receiving intelligence from Layer 2
and producing evidence for Layer 4.
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13 Comparison with General-Purpose Languages

Table 2 provides a systematic comparison across the dimensions of the kinetic gap.

Table 2: Systematic comparison: ZELC vs. general-purpose languages along kinetic gap dimensions.

Dimension

GPL (Python/Bash)

ZelC

Execution Model

Safety Architecture

Permission Model

Audit Trail

AT Safety

Blast Radius

Cloud Integration

Compliance

Data Types

Taint Tracking

Unrestricted; any line can mutate state
None; developer writes all checks
OS-level ambient authority (root = God)
Text logs (mutable, deletable)

Prompt engineering (hope and pray)

No language-level concept

External libraries (boto3, azure-sdk)
Manual reports after the fact

Strings, integers, lists

None (developer responsibility)

Read-only by default; mutations
only in do blocks

Three-layer: type safety, memory
safety, kinetic guard
Capability tokens: explicit, atten-
uated, time-bounded

Evidence objects (immutable,
hash-chained, signed)

Intent validation (compiler + run-
time contracts)

Compile-time abstract interpre-
tation + runtime re-check

Native primitives (cloud.aws,
cloud.azure)

Real-time proof generated at run-
time

Security-semantic: IP, CIDR,
CVE, RiskScore, IOCSet

Language-level IFC with
evidence-generating sanitization

14 Evaluation Methodology

We propose the following metrics organized by evaluation dimension.
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Table 3: Proposed evaluation metrics for ZELC.

ID Dimension Description Formula

S;  Safety Fraction of unsafe requests rejected |{a : = Sat}|/|{a : unsafe}|

Sy Safety False-reject rate [{a : safe A = Sat}|/|{a : safe}|

Ss  Safety Time-to-containment (ms) teontain — fdetect

E;  Evidence Evidence completeness See Eq. 99

E; Evidence Tamper-detection rate [{m : detected}|/|{m : tampered}|
E; Evidence Verification time (ms) tyerify (inclusion proof)

0O, Operator Time-to-understand playbook tcomprehend (S€C)

Os  Operator Review error rate |missed dangers|/[total dangers|
Ay Agentic Hallucinated actions blocked [{a : hallucinated A blocked}|/|{a : hallucinated}|
Ay Agentic Permitted task success rate [{t : success}|/|{t : attempted}|

The evidence completeness metric is formally:

_ |{ai € A(P) | Jev; € E(P)}|
|A(P)]

Under ZELC’s evidence-first semantics (Proposition 6.7), the design target is Fq = 1.0.

Eq (99)

The containment-time metric S3 captures the end-to-end operational velocity. For the ransomware
scenario (Listing 2), the target is:

S3 < 400 ms (detect — isolate — evidence anchored) (100)

15 Contribution Claims

To maintain academic rigor, we state ZELC’s contributions as integration-level mechanisms. Each
claim identifies the novel binding and cites the prior art it builds upon.

Claim 15.1 (C1: Kinetic Semantics as Primary Operational Effect). A language/runtime model
enforcing structural separation between read-only reasoning (RO) and state-changing cybersecurity
actuation (KI), with actuation permitted only inside explicit kinetic blocks (do...end) and prohib-
ited elsewhere, via effect checks (Theorem 3.8) and runtime gating (Rule KIN-ACCEPT). Prior art:
effect systems [3, 4].

Claim 15.2 (C2: Capability-Scoped Actuation with Formal Non-Escalation). A language invariant
binding each kinetic action to explicit capability tokens with proven monotonic non-escalation
(Proposition 4.5). Prior art: capability security [1, 2].

Claim 15.3 (C3: Intent Contracts as Enforced Blast-Radius Constraints). A compiler/runtime
mechanism interpreting intent declarations as constraint-satisfaction problems (Definition 5.2) with
compile-time blast-radius bounding via abstract interpretation (Theorem 5.6). Prior art: admission
control [5-7], abstract interpretation [9], eBPF verifier [8].

Claim 15.4 (C4: Evidence-First Semantics with Cryptographic Anchoring). A runtime emitting
structured evidence records as a semantic consequence of kinetic execution (Rule KIN-ACCEPT),
with hash chaining (Lemma 6.4), signature blocks, and Merkle-tree anchoring (Definition 6.5). Prior
art: tamper-evident logging [11-13], transparency logs [14, 15].
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Claim 15.5 (C5: Agent-Agnostic Enforcement with Taint Safety). A safety model in which
identical constraints are enforced regardless of code authorship (Theorem 8.2), with taint tracking

that prevents untrusted data from reaching sensitive sinks without evidence-generating sanitization
(Theorem 7.6). Prior art: PCC [18], LMQL [19], IFC [10, 16, 17].

16 Conclusion

ZELC proposes a cybersecurity-native programming model that treats actuation, authority, gover-
nance, and evidence as first-class semantics. While each underlying primitive has significant prior
art, ZELC’s contribution is an integrated, operator-centered language/runtime that binds these
mechanisms into a coherent operational semantics for the security operations center and incident
response—especially in an agentic era where “prompt discipline” is not a safety strategy.

The formal model presented herein comprises: (i) an effect-typed kinetic boundary with sound-
ness proof, (ii) a capability algebra with monotonic non-escalation, (iii) intent contracts formalized
as constraint-satisfaction problems with blast-radius bounding via abstract interpretation, (iv) cryp-
tographic evidence chains with Merkle-tree anchoring and inclusion-proof verification, (v) taint
tracking with evidence-generating sanitization for operational sinks, and (vi) a conformance predicate
providing agent-agnostic safety guarantees.

The concrete program listings demonstrate that these formal mechanisms are not abstract
constructs but directly executable security operations: ransomware containment, credential rotation,
brute-force defense, supply-chain integrity, and zero-trust network gating.

By making kinetic operations explicit, capability-scoped, intent-constrained, and evidentiary by
construction, ZELC aims to reduce catastrophic operator error, improve auditability, and enable
safe automation at scale—closing the kinetic gap that has separated security intent from operational
execution for decades.

A ZelC Type Universe: Complete Reference

Table 4 enumerates the complete type universe.
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Table 4: Complete ZELC type universe.

Category Type Description
Primitive unit, Bool, Int, Float, Text Standard value types
Temporal Duration, Timestamp Time-aware operations
Network IP, CIDR, Port, MAC, URL Network address types
Identity Userld, Groupld, ServiceAccount Identity primitives
Crypto Hash, Signature, PublicKey, Certificate Cryptographic types
Threat CVE, I0CSet, YaraRule, SigmaRule Threat intelligence
Risk RiskScore, Severity, Priority Risk quantification
Incident Incident, Ticket, Timeline Case management
Evidence EvidencePack, AuditRecord, ChainOfCustody Forensic types
Compliance Controlld, Baseline, GapReport GRC mapping

Cloud Instance, Bucket, SecurityGroup, VPC Cloud resource types
Container Pod, Container, Image, SBOM Container ecosystem
Compound  List[7], Map|7k, 7], Record{. ..} Generic containers
Function T —° Ty Effect-annotated functions

B ZelC Action Taxonomy

Table 5 classifies the kinetic action vocabulary by domain.

Table 5: Kinetic action taxonomy (representative subset).

Domain Action Signature

Firewall  firewall.block IP x Duration —X' unit
EDR edr.isolate Text —K! unit

EDR edr.kill Int x Text —X unit
EDR edr.quarantine Text x Text —K' unit
TAM iam.revoke UserId —X! unit

TIAM iam.lock UserId —X! unit

AWS aws.rotate_keys UserId —X' unit

AWS aws.ec2.snapshot Instance —K! Hash

AWS aws.s3.block_public Bucket —K! unit

Azure azure.ad.block_user Userld —X' unit

Azure azure.nsg.deny Text x IP —K! unit

GCP gcloud.iam.disable ServiceAccount —K! unit
K8s kube.isolate_pod Pod —X' unit

Docker docker.stop Container —X! unit
Linux linux.kill Int —K! unit

Linux linux.service.restart Text —X' unit

Crypto crypto.sign Text —K! Signature
Rosecoin rosecoin.anchor EvidencePack —X' Hash

Note that every action in this table carries effect Kl and therefore can only appear inside a do
block, subject to capability authorization and intent satisfaction.
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C Formal Proof: Evidence Chain Integrity

Theorem C.1 (Evidence Chain Integrity). Let & = (evy,..., evy,) be the evidence trace. Let
(ho, ..., hy) be the hash chain (Definition 6.3), R = MerkleRoot(h1, ..., hy), and (sigy, ..., sig,,)
the signature checkpoints. The following properties hold under standard cryptographic assumptions:

(i) Completeness: Every kinetic action has a corresponding evidence record (E; = 1.0).
(i) Tamper evidence: Modification of any ev; is detectable (Lemma 6.4).
111) Non-repudiation: For each signed checkpoint sig;, the signer cannot deny having seen hy..
J j
(iv) Append-only: Deletion of any ev; is detectable via the hash chain break.
(v) Verifiable inclusion: For any evy, an auditor can verify inclusion via Verifylnclusion in
O(logn) time.

Proof. (i) follows from Proposition 6.7 and the operational semantics (rules KIN-ACCEPT and
KIN-REJECT both emit evidence). (ii) follows from Lemma 6.4. (iii) follows from the unforgeability
of digital signatures under the chosen scheme. (iv) follows because deletion of ev; removes h; from
the chain, causing h;1 verification to fail. (v) follows from the standard Merkle-tree inclusion proof:
the proof path 7 has length [log, n], and verification requires [logy, n] hash computations. O [
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